Table 1

Wavelength Range (mm)	Emission Duration (s)	Class 1 [†] (W)	Class 2 (W)	Class 3 [§] (W)	Class 4 (W)
Ultraviolet					
0.18 to 0.302 0.302 to 0.4	3 x 10 ⁴ 3 x 10 ⁴	$\leq 9.6 \times 10^{.9}$ $\leq 3.2 \times 10^{.6}$	-	> Class 1 but ≤ 0.5	>0.5 >0.5
		depending on wavelength (see Table 5)			
Visible					
0.4 to 0.7	10†	$\leq 0.4 \times 10^{-3}$ (see Table 5)	> Class 1 but $\leq 1 \times 10^{-3}$	> Class 2 but ≤ 0.5	> 0.5
Near Infrared					
0.7 to 1.05	≥ 10	$\leq 0.4 \times 10^{-3}$ to $\leq 1.9 \times 10^{-3}$	-	> Class 1 but ≤ 0.5	> 0.5
1.05 to 1.15 1.15 to 1.2 1.2 to 1.4	≥ 10 ≥ 10 ≥ 10	$\leq 1.9 \times 10^{-3} \\ \leq 1.9 \times 10^{-3} \text{ to } 1.5 \times 10^{-2} \\ \leq 1.5 \times 10^{-2}$	-	> Class 1 but ≤ 0.5	> 0.5
Far Infrared					
1.4 to 100	> 10	$\leq 9.6 \times 10^{-3}$	-	> Class 1 but > 0.5	> 0.5
Submillimeter					
10 ² to 10 ³	> 10	$\leq 9.5 \times 10^{-2}$	-	> Class 1 but > 0.5	> 0.5

Accessible Emission Limits for Continuous-Wave Small-Source Lasers and Laser Systems*

* Emission duration ≥ 0.25 s.

[†] When the design or intended use of the laser or laser system ensures personnel exposures of less than 10⁴ s in any 24-hour period, the limiting exposure duration may establish a higher exempt power level, as discussed in 3.2.3. The Class 1 AELs calculated with this standard, under certain circumstances, may not be equivalent to those calculated with FLPPS or the IEC standard.

For 1 to 5 mW CW laser systems (Class 3a) see 3.3.3.1 and 3.3.3.2.

NOTE: The wavelength range λ_1 to λ_2 means $\lambda_1 \leq \lambda < \lambda_2$, e.g., 0.18 to 0.4 μ m means 0.18 $\leq l < 0.4 \mu$ m.

41

Table 2

Wavelength	Emission			
Range (µm)	Duration** (s)	Class 1 (J)	Class 3b (J)	Class 4 (J)
Ultraviolet				(3)
0.18 to 0.302 ⁺	10 ⁻⁹ to 0.25	$\leq 2.4 \text{ x } 10^{-5}$	> Class 1 but ≤ 0.125	> 0.125
0.302 to 0.4	10-9	$\leq 2.4 \text{ x } 10^{-5}$	> Class 1 but ≤ 0.125	> 0.125
	to 0.25	$\leq 3.1 \text{ x } 10^{-3}$	> Class 1 but ≤ 0.125	> 0.125
Visible				
0.4 to 0.7	10 ⁻⁹ to	$\leq 0.2 \text{ x } 10^{-6}$	> Class 1 but ≤ 0.03	> 0.03
	0.25	$\leq 0.25 \text{ x } 10^{-3}$	> Class 1 but ≤ 0.03	> 0.03
Near Infrared				
0.7 to 1.05	10 ⁻⁹ to 0.25	$\leq 1.9 \ \mathrm{x} \ 10^{\text{-7}}$ to $\leq 1.2 \ \mathrm{x} \ 10^{\text{-3}}$	> Class 1 but $\leq 0.03 \text{ C}_{A}$	> 0.03 C _A ***
1.05 to 1.4	10 ⁻⁹ to 0.25	$\leq 1.9 \ x \ 10^{\text{-6}}$ to $\leq 9.8 \ x \ 10^{\text{-3}}$	> Class 1 but ≤ 0.125	> 0.125
Far Infrared				
1.4 to 10 ²	10 ⁻⁹ to 0.25	$\leq 79 \text{ x } 10^{-6} \text{ to } \leq 7.9 \text{ x } 10^{-3}$	> Class 1 but ≤ 0.125	> 0.125
Submillimeter				
10 ² to 10 ³	10 ⁻⁹ to 5 x 10 ⁻⁶ 5 x 10 ⁻⁶ to 0.25	≤ 0.01 to 0.025 ≤ 0.025 to ≤ 0.38	> Class 1 but ≤ 0.125 > Class 1 but $\leq 5 \times Class 1$	> 0.125 > 5 x Class 1

Accessible Emission Levels (Radiant Energy)

There are no Class 2 single-pulse lasers. *

See note in Section 8 for pulse widths less than 1 ns. **

[†] Wavelength dependent (see Table 5).

*** Not to exceed 0.125 J

NOTE: The wavelength range λ_1 to λ_2 means $\lambda_1 \leq \lambda < \lambda_2$, e.g., 0.18 to 0.4 μ m means 0.18 $\leq \lambda < 0.4 \mu$ m.

and it

AMERICAN NATIONAL STANDARD Z136.1 - 2000

Table 3

Diffusely Reflected Beam Energy in Joules Which does not Exceed the MPE Values.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Beam Diameter (cm)	20	Viewing Distance, r ₁ (cm) 100	10 ³	
	$\begin{array}{c} 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 1.0 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \\ 3.5 \\ 4.0 \\ 4.5 \\ 5.0 \\ 6.0 \\ 7.0 \\ 8.0 \\ 9.0 \end{array}$	$\begin{array}{c} 0.004 \times C_{A} \\ 0.006 \times C_{A} \\ 0.008 \times C_{A} \\ 0.011 \times C_{A} \\ 0.013 \times C_{A} \\ 0.015 \times C_{A} \\ 0.015 \times C_{A} \\ 0.020 \times C_{A} \\ 0.022 \times C_{A} \\ 0.022 \times C_{A} \\ 0.034 \times C_{A} \\ 0.034 \times C_{A} \\ 0.046 \times C_{A} \\ 0.074 \times C_{A} \\ 0.11 \times C_{A} \\ 0.15 \times C_{A} \\ 0.20 \times C_{A} \\ 0.20 \times C_{A} \\ 0.20 \times C_{A} \\ 0.26 \times C_{A} \\ 0.33 \times C_{A} \\ 0.50 \times C_{A} \\ 0.7 \times C_{A} \\ 0.9 \times C_{A} \\ 1.3 \times C_{A} \end{array}$	$\begin{array}{c} 0.021 \times C_{A} \\ 0.032 \times C_{A} \\ 0.042 \times C_{A} \\ 0.053 \times C_{A} \\ 0.063 \times C_{A} \\ 0.074 \times C_{A} \\ 0.074 \times C_{A} \\ 0.095 \times C_{A} \\ 0.095 \times C_{A} \\ 0.11 \times C_{A} \\ 0.16 \times C_{A} \\ 0.21 \times C_{A} \\ 0.21 \times C_{A} \\ 0.27 \times C_{A} \\ 0.32 \times C_{A} \\ 0.38 \times C_{A} \\ 0.38 \times C_{A} \\ 0.44 \times C_{A} \\ 0.49 \times C_{A} \\ 0.49 \times C_{A} \\ 0.55 \times C_{A} \\ 0.68 \times C_{A} \\ 0.79 \times C_{A} \\ 0.91 \times C_{A} \\ 1.0 \times C_{A} \end{array}$	$ \begin{array}{c} 1.6 \times C_{A} \\ 2.1 \times C_{A} \\ 2.6 \times C_{A} \\ 3.2 \times C_{A} \\ 3.7 \times C_{A} \\ 4.2 \times C_{A} \\ 4.7 \times C_{A} \\ 5.3 \times C_{A} \\ 6.3 \times C_{A} \\ 7.4 \times C_{A} \\ 9.5 \times C_{A} \\ \end{array} $	

Pulsed Lasers (1 ns to 50 μ s Pulse Duration: Wavelengths Between 0.400 to 1.400 μ m).⁺

The table shows the values for pulsed lasers with 1 ns to 18 μ s pulse durations for the wavelength region 0.400 to 1.050 μ m and 1 ns to 50 μ s for the wavelength region 1.050 to 1.400 μ m.

Notes:

1. The diffuse reflection values Q are based on the MPE values in Table 5 and are calculated from the general equation

$$Q = \frac{\pi(\text{MPE})(r_1 + D_{\rho}/2)^2}{\rho_{\lambda}\cos\theta_{\nu}}$$

which is valid for all exposure durations where the MPE in Table 5 is expressed in J-cm⁻², including those for 100 fs to 1 ns. D_{ρ} is the diameter of the laser beam at the reflection site, θ_{ν} is the viewing angle, ρ_{λ} is the spectral reflectance as a function of wavelength (where this is not known, the value 1 is used), and r_{I} is the viewing distance. In calculating the above values, the following was assumed: $\theta_{\nu} = 90^{\circ}$; $\rho_{\lambda} = 1$; and n = 1 (that is, these values are for the single-pulse case). The MPE values substituted into the above equation must include the correction factors C_{A} , C_{C} , C_{E} , and C_{P} where appropriate, and for wavelengths between 0.4 and 0.55 μ m, the MPE is the lower value of the thermal and photochemical MPE computations (see Tables 5 and 6 and Section 8.2.3.2).

2. In the wavelength region 1.050 to 1.400 μ m, the tabular values above are to be multiplied by the term 2 x C_c (see Table 6).

3. For targets of known reflectance, the above values may be divided by the reflectance of the target.

Table 4a

Wavelength Range	Diffuse (seconds)	Intrabeam (seconds)
UV		
200 - 400 nm	30,000	30,000
Visible		
400 - 700 nm	600	0.25**
NIR		
700 - 1400 nm	600	10
FIR		
1400 - 1 mm	10	10

Time Factor Recommendations for CW and Repetitive-Pulse Laser Optical Density Calculations*

* For single pulse lasers (PRF < 1 Hz) use actual laser pulse time

** For unintended or accidental viewing only. For other conditions, use the time of *intended* viewing.

Table 4b

					· ····· unu i	(100 µm)			
Q-Switch (10 ⁻⁹ -	ned Laser 10 ⁻² s)		tched Lasers) ⁻³ - 10 ⁻² s)	Mon	-Wave Lasers nentary - 10 s)	Lasers I	ous-Wave Long-Term g (< 1 hr)	Attenuatio	on
Maximum Output Energy (J)	Max Beam Radiant Exposure (J·cm ⁻²)	Max Laser Output Energy (J)	Max Beam Radiant Exposure (J·cm ⁻²)	Max Power Output (W)	Max Beam Irradiance (W·cm ⁻²)	Max Power Output (W)	Max Beam Irradiance (W·cm ⁻²)	Attenuation Factor	OD
$ \begin{array}{r} 10\\ 1\\ 10^{-1}\\ 10^{-2}\\ 10^{-3}\\ 10^{-4}\\ \end{array} $	$20 \\ 2 \\ 2 \\ x \\ 10^{-1} \\ 2 \\ x \\ 10^{-2} \\ 2 \\ x \\ 10^{-3} \\ 2 \\ x \\ 10^{-4} $	100 10 1 10 ⁻¹ 10 ⁻² 10 ⁻³	200 20 2 x 10 ⁻¹ 2 x 10 ⁻² 2 x 10 ⁻³	$10^{5} *$ $10^{4} *$ $10^{3} *$ 100 * 10 1	$2 \times 10^{5} *$ $2 \times 10^{4} *$ $2 \times 10^{3} *$ 200 * 20 2	100 * 10 * 1 10 ⁻¹ 10 ⁻² 10 ⁻³	$200 * 20 * 2 x 10^{-1} 2 x 10^{-2} 2 x 10^{-3}$	10^{8} 10^{7} 10^{6} 10^{5} 10^{4} 10^{3}	8 7 6 5 4 3
10 ⁻⁵ 10 ⁻⁶	2 x 10 ⁻⁵ 2 x 10 ⁻⁶	10 ⁻⁴ 10 ⁻⁵	2 x 10 ⁻⁴ 2 x 10 ⁻⁵	10 ⁻¹ 10 ⁻²	2 x 10 ⁻¹ 2 x 10 ⁻²	10 ⁻⁴ 10 ⁻⁵	2 x 10 ⁻⁴ 2 x 10 ⁻⁵	10 ² 10	2 1

Simplified Method for Selecting Laser Eye Protection for Small-Source Viewing (Wavelengths Between 0.400 and 1.400 $\mu m)^{\dagger}$

[†] Use of this table may result in optical densities (OD) greater than necessary. See 4.6.2 for other wavelengths.

* Not recommended as a control procedure at these levels. These levels of power could damage or destroy the attenuating material used in the eye protection. The skin also needs protection at these levels.

Wavelength	Exposure Duration, t	M	PE	Notes
(µm)	(s)	$(J \cdot cm^{-2})$	$(W \cdot cm^{-2})$	<i>P</i>
Ultraviolet				
0.180 to 0.302	10^{-9} to 3 x 10^{4}	3 x 10 ⁻³		
0.303	10^{-9} to 3 x 10^{4}	4 x 10 ⁻³		
0.304	10^{-9} to 3 x 10^{4}	6 x 10 ⁻³		
0.305	10^{-9} to 3 x 10^{4}	10 x 10 ⁻³		0.25
0.306	10 ⁻⁹ to 3 x 10 ⁴	16 x 10 ⁻³		or 0.56 t ^{0.25}
0.307	10^{-9} to 3 x 10^{4}	25 x 10 ⁻³		whichever is lower.
0.308	10^{-9} to 3 x 10^{4}	40 x 10 ⁻³		
0.309	10^{-9} to 3 x 10^{4}	63 x 10 ⁻³		
0.310	10^{-9} to 3 x $\cdot 10^{4}$	0.1		}
0.311	10^{-9} to 3 x 10^{4}	0.16		(See Tables 8 and 9
0.312	10^{-9} to 3 x 10^{4}	0.25		for limiting apertures)
0.313	10^{-9} to 3 x 10^{4}	0.40		
0.314	10^{-9} to 3 x 10^{4}	0.63		
0.315 to 0.400	10 ⁻⁹ to 10	0.56 t ^{0.25}		
0.315 to 0.400	10 to 3 x 10 ⁴	1.0		/
Visible and Near I	nfrared			
0.400 to 0.700	10 ⁻¹³ to 10 ⁻¹¹	1.5 x 10 ⁻⁸		
0.400 to 0.700	10 ⁻¹¹ to 10 ⁻⁹	$2.7 t^{0.75}$		
0.400 to 0.700	10^{-9} to 18 x 10^{-6}	5.0×10^{-7}		
0.400 to 0.700	18 x 10 ⁻⁶ to 10	$1.8 t^{0.75} \times 10^{-3}$		
	10 1 10 10 10	1.0 t A 10		(See Tables 8 and 9
0.400 to 0.450	10 to 100	1 x 10 ⁻²		for limiting apertures)
0.450 to 0.500	10 to T,		1 x 10 ⁻³	For multiplepulses
0.450 to 0.500	T ₁ to 100	$C_{B} \ge 10^{-2}$		apply correction factor
0.400 to 0.500	100 to $3 \ge 10^4$	Б	$C_B \ge 10^{-4}$ 1 \times 10^{-3}	C_p given in Table 6.
0.500 to 0.700	$10 \text{ to } 3 \times 10^4$		1 x 10 ⁻³	
0.700 to 1.050	10 ⁻¹³ to 10 ⁻¹¹	$1.5 C_{A} \ge 10^{-8}$		
0.700 to 1.050	10 ⁻¹¹ to 10 ⁻⁹	$2.7 C^{4} t^{0.75}$		}
0.700 to 1.050	10 ⁻⁹ to 18 x 10 ⁻⁶	$\begin{array}{c} 2.7 \ C_{A}^{A} \ t^{0.75} \\ 5.0 \ C_{A}^{A} \ x \ 10^{-7} \end{array}$		
0.700 to 1.050	18 x 10 ⁻⁶ to 10	$1.8 C_{4}^{A} t^{0.75} \ge 1$	0-3	
0.700 to 1.050	10 to 3×10^4	A	$C_{A} \ge 10^{-3}$	
1.050 to 1.400	10 ⁻¹³ to 10 ⁻¹¹	$1.5 C \times 10^{-7}$		
1.050 to 1.400	10 ⁻¹¹ to 10 ⁻⁹	$\begin{array}{c} 1.5 \ C \\ 27.0 \ C \\ c \\ t^{0.75} \end{array}$		
1.050 to 1.400	10^{-9} to 50 x 10^{-6}	$5.0 C_{c} \times 10^{-6}$		
1.050 to 1.400	50 x 10 ⁻⁶ to 10	9.0 C_{c}^{c} t ^{0.75} x 1	0-3	
1.050 to 1.400	10 to 3×10^4	C	$5.0 C_{c} \ge 10^{-3}$]
Far Infrared			L	
1.400 to 1.500	10 ⁻⁹ to 10 ⁻³	0.1		
1.400 to 1.500	10 ⁻³ to 10	0.56 t ^{0.25}		
1.400 to 1.500	10 to 3 x 10 ⁴	anteritik ant 2	0.1	For multiple pulses
1.500 to 1.800	10 ⁻⁹ to 10	1.0	0.1	apply correction factor
1.500 to 1.800	10 to 3 x 10 ⁴		0.1	C_p given in Table 6
1.800 to 2.600	10 ⁻⁹ to 10 ⁻³	0.1	0.1	
1.800 to 2.600	10 ⁻³ to 10	0.56 t ^{0.25}		(See Tables 8 and 9 for
1.800 to 2.600	10 to 3 x 10 ⁴		0.1	limiting apertures)
2.600 to 10 ³	10 ⁻⁹ to 10 ⁻⁷	1 x 10 ⁻²	0.1	
$2.600 \text{ to } 10^3$	10 ⁻⁷ to 10	$0.56 t^{0.25}$		1
2.600 to 10^3	10 to $3 \ge 10^4$		0.1	1

Table 5a Maximum Permissible Exposure (MPE) for Small-Source Ocular Exposure to a Laser Beam [†]

See Table 6 and Figures 8 and 9 for correction factors C_E, C_B and time T₁. For exposure durations greater than 10 seconds and extended sources in the retinal hazard region (0.400 t to 1.4 µm), see Table 5b. Notes:

1.

1.20.84

2. 3.

For repeated (pulsed) exposures, see Section 8.2.3. For repeated (pulsed) exposures, see Section 8.2.3. The wavelength region λ_1 to λ_2 means $\lambda_1 \leq \lambda < \lambda_2$, e.g., 0.180 to 0.302 µm means 0.180 $\leq \lambda < 0.302$ µm. Dual Limit Application: In the Dual Limit Wavelength Region (0.400 to 0.600 µm), the listed MPE is the lower value of the photochemical and thermal MPEs as determined by T_1 .

1. . 44

Table 5b

Maximum Per	missible Exposure (MPE) for Extended-Source Ocular Exposure	
	to a Laser Beam for Long Exposure Durations [†]	

Wavelength	Exposure Duration, t	М	PE	Notes
(µm)	(s)	$(J \cdot cm^{-2})$	$(W \cdot cm^{-2})$	
		except as noted	except as noted	
Visible				
0.400 to 0.700	10 ⁻¹³ to 10 ⁻¹¹	$1.5 C_{E} \ge 10^{-8}$		(See Tables 8 and 9
0.400 to 0.700	10 ⁻¹¹ to 10 ⁻⁹	2.7 C_{E}^{L} t ^{0.75}		for limiting apertures)
0.400 to 0.700	10 ⁻⁹ to 18 x 10 ⁻⁶	5.0 $C_{E}^{L} \ge 10^{-7}$		for mining uporturos)
0.400 to 0.700	18 x 10 ⁻⁶ to 0.7	$1.8 C_E^L t^{0.75} \ge 10^{-5}$	3	
Photochemical	Dual Limits for 400 - 600 nm vi	sible laser exposure for	t > 0.7 s	
	For $\alpha \leq 11$ mrad, the MPE is exp	ressed as irradiance and	radiant avnogura*	
0.400 to 0.600	0.7 to 100	$C_{\rm p} \ge 10^{-2}$	radiant exposure*	
0.400 to 0.600	$100 \text{ to } 3 \times 10^4$	CBXIO	$C_{_{R}} \ge 10^{-4}$	(Cas Tables 0 and 0
	100 10 5 11 10		$C_B \times 10$	(See Tables 8 and 9
	For $\alpha > 11$ mrad, the MPE is exp	pressed as radiance and i	integrated radianca*	for limiting apertures)
0.400 to 0.600	$0.7 \text{ to } 1 \ge 10^4$	$100 C_{\rm B} \mathrm{J}\cdot\mathrm{cm}^{-2}\cdot\mathrm{sr}^{-1}$	integrated radiance	(See Table 8 for
0.400 to 0.600	$1 \ge 10^4$ to $3 \ge 10^4$		$C_{\rm p} \ge 10^{-2} {\rm W} \cdot {\rm cm}^{-2} \cdot {\rm sr}^{-1}$	limiting cone angley)
	and			minning cone angley)
Thermal				
0.400 to 0.700	0.7 to T ₂	$1.8 C_{E} t^{0.75} \ge 10^{-3}$		
0.400 to 0.700	T_2 to 3 x 10 ⁴	E	1.8 $C_E T_2^{-0.25} \ge 10^{-3}$	
Near Informal				
Near Infrared 0.700 to 1.050	10-13 + - 10-11			
0.700 to 1.050	10 ⁻¹³ to 10 ⁻¹¹ 10 ⁻¹¹ to 10 ⁻⁹	$\frac{1.5 C_A C_E \times 10^{-8}}{2.7 C_A C_E t^{0.75}}$		(See Tables 8 and 9
0.700 to 1.050		$2.7 C_A C_E t^{0.75}$		for limiting apertures)
0.700 to 1.030	10 ⁻⁹ to 18 x 10 ⁻⁶	5.0 $C_{A}^{^{a}} C_{E}^{^{a}} \ge 10^{-7}$ 1.8 $C_{A}^{^{a}} C_{E}^{^{a}} t^{0.75} \ge 1$		
0.700 to 1.030	18×10^{-6} to T ₂	1.8 $C_A C_E t^{0.75} x$	10-3	
0.700 10 1.050	T_{2} to 3 x 10 ⁴		1.8 $C_A C_E T_2^{-0.25} \ge 10^{-3}$	
1.050 to 1.400	10 ⁻¹³ to 10 ⁻¹¹	1500×10^{-7}		
1.050 to 1.400	10 ⁻¹¹ to 10 ⁻⁹	$27.0C$ C $t^{0.75}$		
1.050 to 1.400	10^{-9} to 50 x 10^{-6}	$\begin{array}{c} 1.5 \ C \ C_E \ x \ 10^{-7} \\ 27.0 \ C_C \ C_E \ t^{0.75} \\ 5.0 \ C_C \ C_E \ x \ 10^{-6} \\ 9.0 \ C_C \ C_E \ t^{0.75} \ x \ 1 \end{array}$		
1.050 to 1.400	50 x 10 ⁻⁶ to T_2	9.0 $C_{C}^{C} C_{E}^{E} t^{0.75} x$	0-3	
1.050 to 1.400	T_{2} to 3 x 10 ⁴	~ 2	9.0 $C_{c} C_{E} T_{2}^{-0.25} \ge 10^{-3}$	

^tSee Table 6 and Figures 8, 9 and 11 for correction factors C_A, C_B, C_C, C_E, C_P and time T_2 . *For sources subtending an angle greater than 11 mrad, the limit may also be expressed as an integrated radiance $L_p = 100 C_B J \cdot cm^{-2} \cdot sr^{-1}$ for 0.7 s $\leq t < 10^4$ s and $L_c = C_B \times 10^{-2} W \cdot cm^{-2} \cdot sr^{-1}$ for $t \geq 10^4$ s as measured through a limiting cone angle γ . These correspond to values of $J \cdot cm^{-2}$ for 10 s $\leq t < 100$ s and $W \cdot \gamma = 11$ mrad for 0.7 s $\leq t < 10^4$ s $\gamma = 1.1 \times t^{0.5}$ mrad for 100 s $\leq t < 10^4$ s

- $\gamma = 110 \text{ mrad for } 10^4 \text{ s} \le t < 3 \text{ x } 10^4 \text{ s}$

See Figure 3 for γ and Appendix B7.2 for examples. Notes:

- 1. For repeated (pulsed) exposures, see Section 8.2.3.
 - 2.
 - The wavelength region λ_1 to λ_2 means $\lambda_1 \le \lambda < \lambda_2$, e.g., 1.180 to 1.302 µm means 1.180 $\le \lambda < 1.302$ µm. Dual Limit Application: In the Dual Limit wavelength region (0.400 to 0.600 µm), the exposure limit is the lower value of the determined 3. photochemical and thermal exposure limit.

Parameters/Correction Factors	Wavelength (µm)	Figure*
$T_1 = 10 \ge 10^{20} (\lambda - 0.450) **$	0.450 to 0.500	9a
$T_2 = 10 \times 10^{(\alpha - 1.5)/98.5}$ ***	0.400 to 1.400	.9b
$C_{\rm B} = 1.0$	0.400 to 0.450	8c
$C_{\rm B} = 10^{20(\lambda - 0.450)}$	0.450 to 0.600	8c
$C_{\rm A} = 1.0$	0.400 to 0.700	8a
$C_{\rm A} = 10^{2(\lambda - 0.700)}$	0.700 to 1.050	8a
$C_{\rm A} = 5.0$	1.050 to 1.400	8a
$C_{\rm p} = {\rm n}^{-0.25}$ ****	0.180 to 1000	13
$C_{\rm E} = 1.0 \alpha < \alpha_{\rm min}$	0.400 to 1.400	
$C_{\rm E} = \alpha / \alpha_{\rm min} \alpha_{\rm min} \le \alpha \le \alpha_{\rm max}$	0.400 to 1.400	
$\mathcal{L}_{E} = \alpha^{2} / (\alpha_{\max} \alpha_{\min}) \qquad \alpha > \alpha_{\max}$	0.400 to 1.400	
$C_{\rm c} = 1.0$	1.050 to 1.150	8b
$C_{\rm C} = 10^{18(\lambda - 1.150)}$	1.150 to 1.200	8b
$C_{\rm c} = 8$	1.200 to 1.400	8b

 Table 6

 Parameters and Correction Factors

* See figures for graphic representation.

** $T_1 = 10$ s for $\lambda = 0.450$ µm, and $T_1 = 100$ s for $\lambda = 0.500$ µm.

•••• $T_2 = 10$ s for $\alpha < 1.5$ mrad, and $T_2 = 100$ s for $\alpha > 100$ mrad.

**** See Section 8.2.3 for discussion of C_p and Section 8.2.3.2 for discussion of pulse repetition frequencies below 55 kHz (0.4 to 1.05 μm) and below 20 kHz (1.05 to 1.4 μm).

Notes:

1. For wavelengths between 0.400 and 1.400 μ m: $\alpha_{min} = 1.5 \text{ mrad}$ $\alpha_{max} = 100 \text{ mrad}$

2. Wavelengths must be expressed in micrometers and angles in milliradians for calculations.

The wavelength region λ_1 to λ_2 means $\lambda_1 \le \lambda < \lambda_2$, e.g., 0.550 to 0.700 µm means $0.550 \le \lambda < 0.700$ µm.

47

Table 7

Wavelength	Exposure Duration, t	Ν	1PE	Notes
(µm)	(s)	(J·cm ⁻²)	(W·cm ⁻²)	
Ultraviolet				
0.180 to 0.302	10^{-9} to 3 x 10^{4}	0 101		
0.303	10^{-9} to 3 x 10^{-9}	3 x 10 ⁻³		
0.304	10^{-9} to 3 x 10^{-9}	4 x 10 ⁻³		
0.305	10^{-9} to 3 x 10^{-9}	6 x 10 ⁻³		
0.306		$1.0 \ge 10^{-2}$		
0.307	10^{-9} to 3 x 10^{4}	1.6 x 10 ⁻²		0.27
0.308	10^{-9} to 3 x 10^{4}	25 x 10 ⁻³		or $0.56t^{0.25}$ whichever is lowe
0.309	10^{-9} to 3 x 10^{4}	40 x 10 ⁻³		3.5 mm limiting aperture:
0.310	10^{-9} to 3 x 10^{4}	63 x 10 ⁻³		(See Table 8)
0.311	10^{-9} to 3 x 10^{4}	0.1		
	10^{-9} to 3 x 10^{4}	0.16		>
0.312	10^{-9} to 3 x 10^{4}	0.25		
0.313	10^{-9} to 3 x 10 ⁴	0.40		
0.314	10^{-9} to 3 x 10^{4}	0.63		
0.315 to 0.400	10 ⁻⁹ to 10	$0.56 t^{0.25}$		
0.315 to 0.400	$10 \text{ to } 10^3$	1		
0.315 to 0.400	10^{3} to 3 x 10^{4}	1	1	
			1 x 10 ⁻³)
Visible and Near In	frared			
0.400 to 1.400	10 ⁻⁹ to 10 ⁻⁷			
	10 ⁻⁷ to 10	$\frac{2 C_{A} \times 10^{-2}}{1.1 C_{A} t^{0.25}}$		
	10 to 10 10 to 3 x 10 ⁴	1.1 $C_{A} t^{0.25}$		3.5mm limiting
	10 to 3 x 10.		0.2 C _A	
Far Infrared			n	apperture: (See Table 8)
and and area)
.400 to 1.500	10 ⁻⁹ to 10 ⁻³	0.1		
.400 to 1.500	10 ⁻³ to 10			
.400 to 1.500	10 to 3 x 10 ⁴	$0.56 t^{0.25}$		
.500 to 1.800	10 ⁻⁹ to 10		0.1	
.500 to 1.800	$10 \text{ to } 3 \text{ x } 10^4$	1.0		
.800 to 2.600	10 ⁻⁹ to 10 ⁻³		0.1	
.800 to 2.600	10 ⁻³ to 10	0.1		l
.800 to 2.600		$0.56 t^{0.25}$		(See Table 8 for
$.600 \text{ to } 10^3$	$10 \text{ to } 3 \times 10^4$		0.1	
$.600 \text{ to } 10^3$	10 ⁻⁹ to 10 ⁻⁷	1 x 10 ⁻²		limiting apertures)
	10 ⁻⁷ to 10	0.56 t ^{0.25}		
600 to 10 ³	10 to 3 x 10 ⁴		0.1]
			0.1	*

Maximum Permissible Exposure (MPE) for Skin Exposure to a Laser Beam

* See 8.4.2 for large beam cross-sections and Table 6 for correction factor $C_{\rm A}$.

NOTE: The wavelength region λ_1 to λ_2 means $\lambda_1 \le \lambda < \lambda_2$, e.g., 0.315 to 0.400 μ m means 0.314 $\le \lambda < 0.400 \ \mu$ m.

Spectral Region		Duration [†]		<i></i>
(μm)		(s)	<u>Aperture Dia</u> Eye	<u>meter (mm)</u> Skin
0.180 to 0.400		10 ⁻⁹ to 0.3	1.0	3.5
		0.3 to 10 *	$1.5 t^{0.375}$	3.5
		$10 \text{ to } 3 \text{ x } 10^4$	3.5	3.5
0.400 to 1.400	a da anta a	10^{-13} to 3 x 10^4	7.0	3.5
1.400 to 10 ²		10 ⁻⁹ to 0.3	1.0	3.5
		0.3 to 10*	$1.5 t^{0.375}$	3.5
		10 to 3 x 10 ⁴	3.5	3.5
10^2 to 10^3		10^{-9} to 3 x 10^{4}	11.0	11.0
			Limiting Cone Angle	, <u>γ (mrad)</u>
0.400 to 0.600		0.7 s to 100	11	
		100 s to 10 ⁴	$1.1 t^{0.5}$	
		10^4 s to 3 x 10^4	110	
			(See Figure 3)	

Table 8

Limiting Apertures (Irradiance and Radiant Exposure) and Limiting Cone Angles γ (Radiance and Integrated Radiance) for Hazard Evaluation and AEL Determination

* Under normal conditions these exposure duration would not be used for hazard evaluation.

[†] For guidance on exposure durations less than 10⁻¹³ seconds, see Section 8.2.2.

NOTE: The wavelength region λ_1 to λ_2 means $\lambda_1 \le \lambda < \lambda_2$ µm e.g., 0.315 to 0.400 µm means 0.315 $\le \lambda < 0.400$ µm.

0

.....

Table 9

Spectral Region (µm)	Duration [†] (s)	Aperture Diameter (mm)	Visible Optics Transmission
0.180 - 0.302	10 ⁻⁹ to 0.3 0.3 to 10*** 10 to 3x10 ⁴	$ 1.0 \\ 1.5 t^{0.375} \\ 3.5 $	<2%
0.302 - 0.4	10 ⁻⁹ to 0.3 0.3 to 10*** 10 to 3 x 10 ⁴	7.0 11 <i>t</i> ^{0.375} 25.0	70%
0.4-0.7 0.7-1.4	10^{-13} to 3 x 10 ⁴ 10 ⁻¹³ to 3 x 10 ⁴	50.0** 50.0**	90% 70%
1.4-2.8	10 ⁻⁹ to 0.3 0.3 to 10*** 10 to 3 x 10 ⁴	7.0 11 <i>t</i> ^{0.375} 25.0	70%
2.8 -10 ²	10 ⁻⁹ to 0.3 0.3 to 10*** 10 to 3 x 10 ⁴	$ 1.0 1.5 t^{0.375} 3.5 $	<2%
$10^2 - 10^3$	10 ⁻⁹ to 3 x 10 ⁴	11.0	<2%

10.11

Measurement Apertures for Laser Classification*

These apertures are used for the measurement of optical power or energy for the purpose of laser classification (see 3.3). When the laser output is intended to be viewed with optics (excluding ordinary eyeglasses) or the Laser Safety Officer ** determines that there is a reasonable probability of accidental viewing with optics, 7 power optics with a 50-mm entrance

aperture and a 7 mm exit aperture is assumed if the following conditions are met:

(1) Viewing with optics presents a more severe hazard than unaided viewing.

(2) The viewing time is sufficient to constitute a hazard.

Otherwise, the limiting apertures for the eye from Table 8 apply. For the specific case of optical viewing with beam

collecting instruments, the apertures listed in Table 8 for hazard evaluation apply to the exit beam of the optical instrument.

***Under normal conditions, These exposure durations would not be used for classification. [†] For guidance on exposure durations less than 10⁻¹³ seconds, see Section 8.2.2.

NOTE: The wavelength region λ_1 to λ_2 means $\lambda_1 \le \lambda < \lambda_2$, e.g., 0.315 to 0.400 μ m means 0.315 $\le \lambda < 0.400 \ \mu$ m.

*