

Logo and address

HIGH ISOLATION MICRO-OPTIC WDM

QUALIFICATION/RELIABILITY TEST REPORT

Prepared by

Approval and Revision List:

Report Name and Release Number

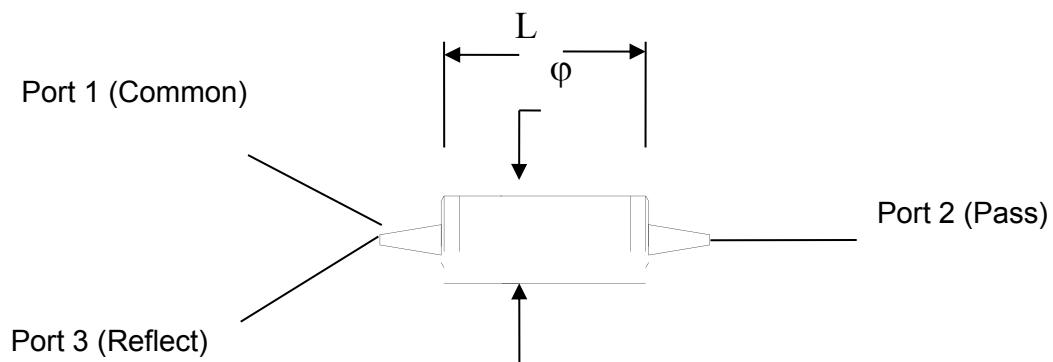
Report Name	HIGH ISOLATION MICRO-OPTIC WDM ON A THERMAL PLATFORM
Report Number	TR06024Z-R01
Date	5/30/2007
Restrictions	Customers Only
Author(s)	

Approval List

Title	Name	Signature	Date
Product Manager			
Manager of Reliability / FA Eng			
Chief Quality Officer			
VP of Engineering			

Revision History Details

Rev	Description	Prepared By	Date
01	Initial Release		


Table of Contents

1.0 INTRODUCTION.....	4
2.0 RELIABILITY TESTS AND SAMPLE PREPARATION.....	5
Table 1 Reliability Test Result Summaries	5
Table 2 Reliability Test Equipment and Locations	6
Table 3 Sample Group Description and Manufacture Date	6
3.0 PRODUCT SPEC AND PASS/FAIL CRITERIA.....	7
Table 4 Product Spec	7
Table 5 Pass/Fail Criteria	7
4.0 TEST RESULT AND CONCLUSION.....	7
Appendix: Test Setup.....	35

1.0 INTRODUCTION

This report lists reliability tests to be performed High Isolation Micro-Optic WDM based on athermal platform manufactured at Oplink, Zhu Hai still to meet the respective industrial standards.

Fig. 1 Schematic diagram of the 100G OADM

2.0 RELIABILITY TESTS AND SAMPLE PREPARATION

The reliability tests, conditions, durations, sample sizes and qualification results are summarized in Table 1. The test equipment and locations are summarized in Table 2. The sample group description and manufacture dates are summarized in Table 3.

Table 1 Reliability Test Result Summaries

Test	Reference	Condition (CO, LTPD 20%) / Duration	Sample Size	Pass / Fail
High Temperature Storage (Damp Heat)	Telcordia GR-1221-CORE, 6.2.5	<ul style="list-style-type: none"> • Temp: 85 °C (± 2 °C) • Humidity: 85%RH ($\pm 5\%$) • Duration Time: 500 hrs for pass/fail criteria, 2000 hrs for information 	11	11
Temperature Cycling	Telcordia GR-1221-CORE, 6.2.7	<ul style="list-style-type: none"> • Temp : -40 °C to 85 °C • Rate: 3 °C/min. • Duration Time: 100 cycles for pass/fail criteria, 500 cycles for info. 	11	11
Vibration	Telcordia GR-1221-CORE, 6.2.2	<ul style="list-style-type: none"> • Type: Sinusoidal • Acceleration Level: 20G • Frequency Range: 20 to 2000 Hz • Duration : 4 min./cycles • 4 cycles/axis 	11	11
Impact	Telcordia GR-1221-CORE, 6.2.1	<ul style="list-style-type: none"> • No. of Shock: 5 times per direction for 6 directions (on 3 axes) • Shock Level: 500G • Duration: 1 ms 	11	11
Fiber Retention	Telcordia GR-1209-CORE 5.4.3.4	0.45kg, 5 seconds, 3 X	11	11
Side Pull	Telcordia GR-1209-CORE 5.4.3.3	0.23kg, 5 seconds, 2 dir.	11	11

Low Temperatur e Storage	Telcordia GR-1221- CORE, 6.2.6	<ul style="list-style-type: none">• Temp : -40 °C (± 2 °C)• RH uncontrolled• Duration Time: 2000 hrs	11	11
High Temperatur e Storage (Dry Heat)	Telcordia GR-1221- CORE, 6.2.4	<ul style="list-style-type: none">• Temp: 85 °C (± 2 °C),• Humidity < 40% RH• Duration Time: 2000 hrs	11	11
High Power	TIA-455-229	<ul style="list-style-type: none">• Temperature: 75 °C• Humidity: N/A• Power: 2.0W• Test Time: 500hr	8	8

Table 2 Reliability Test Equipment and Locations

Test	Equipment	MFGR	Equipment Model	Test Place
Impact	Shock Tester Test Partner Software VER. 2	AVCO Lansmont Corporation	Vs-400.1.5	
Vibration	Electric Magnetic Vibration Machine	IMV	SM-105-MP	
High Temp. (Dry Heat) Storage	Oven	Chuanhua Percision Corp.	RHD-45	
High Temp. (Damp Heat) Storage	Temperature Humidity Chamber	Thermotron	SE-600-3-3	
Low Temp. Storage	Freezer Chamber	Ultra-Low Technology of GS laboratory Equipment	Legaci™	
Temperature Cycling	Temperature Cycling Chamber	Thermotron	S-16	
High Power	1480nm high power laser source. Hot plate	Telecom	RL5-1480	
Fiber Integrity Cable Retention & Side Pull	Tailor Made Mixture & Capstan	Oplink	N/A	

Table 3 Sample Group Description and Manufacture Date

Group	Reliability Test	Manufacturing Date
Z495	<ul style="list-style-type: none">• High Temperature Storage (Damp Heat)	Jan.2007
Z496	<ul style="list-style-type: none">• Temperature Cycling	Jan.2007
Z491	<ul style="list-style-type: none">• High Temp. (Dry Heat) Storage• High Power	Jan.2007
Z490	<ul style="list-style-type: none">• Low Temp. Storage• Fiber Retention• Side Pull• Vibration• Impact	Jan.2007

3.0 PRODUCT SPEC AND PASS/FAIL CRITERIA

An insertion loss change of $\leq \pm 0.5$ dB is used according to the recommendation in Telcordia GR-1221-CORE. Other criteria used are that PDL and so on should meet Oplink's product specification. Table 4 is the product spec. Table 5 summarizes the pass/fail criteria.

Table 4 Product Spec

Item	Parameters	Note	Min	Typical	Max	Unit
1.	Pass Channel Wavelength	1591+/-6.5				nm
2.	Reflection Channel Wavelength	1310+/-50 1490+/-10				nm
3	IL C-P				1.0	
4	IL C-R				0.6	
5.	Polarization Dependent Loss (PDL)				0.15	dB
6	Isolation C-T		40			
7.	Isolation C-R@1550nm		15			dB
8	Return Loss		50			dB
9	Directivity		50			dB
10	Operating Temperature		0		75	
11.	Storage Temperature		-40		85	°C

Table 5 Pass/Fail Criteria

Wavelength: 1550nm(Pass channel), 1310nm&1490nm(Reflect channel), 23°C

Parameters	Maximum/Minimum Allowable Value

Central Wavelength Insertion Loss Change (dB) (Pass Channel& Reflect Channel)		$ \Delta IL \leq 0.50$
Polarization Dependent Loss (dB) (Pass Channel& Reflect Channel)		≤ 0.15
Isolation (dB)	Pass Channel @ 1310nm&1490nm	≥ 40
	Reflect Channel @ 1550nm	≥ 15
Return Loss (dB) (Common Port) @1550nm ,1310nm&1490nm		≥ 50

4.0 TEST RESULT AND CONCLUSION

All results shown that APOD HWDM passed Telcordia tests (GR-1221-CORE, GR-1209-CORE and TIA-455-229) and met the criteria defined in Table 5. Detailed test results are provided in Fig. 2 through Fib. 10.

High Temp. (Damp Heat) Storage Test Result

Figure 2a Insertion Loss Change 1-2 (1591nm) $\leq \pm 0.50$ dB

Figure 2b Insertion Loss Change1-3 (1490nm) $\leq \pm 0.50$ dB

Figure 2c Insertion Loss Change1-3 (1310nm) $\leq \pm 0.50$ dB

Figure 2d Polarization Dependent Loss 1-2 (1591nm) $\leq \pm 0.15$ dB

Figure 2e Polarization Dependent Loss 1-3 (1490nm) $\leq \pm 0.15$ dB

Figure 2f Polarization Dependent Loss 1-3 (1310nm) $\leq \pm 0.15$ dB

Figure 2g Return Loss 1-1 (1490nm) \geq 50 dB

Figure 2h Return Loss 1-1 (1310nm) \geq 50 dB

Figure 2i Return Loss 1-1 (1591nm) \geq 50 dB

Figure 2j Isolation 1-2 (1490nm) \geq 40 dB

Figure 2k Isolation 1-2 (1310nm) \geq 40 dB

Figure 2I Isolation 1-3 (1550nm) ≥ 15 dB

Temperature Cycle Storage Test Result

Figure 3a Insertion Loss Change 1-2 (1591nm) $\leq \pm 0.50$ dB

Figure 3b Insertion Loss Change1-3 (1490nm) $\leq \pm 0.50$ dB

Figure 3c Insertion Loss Change1-3 (1310nm) $\leq \pm 0.50$ dB

Figure 3d Polarization Dependent Loss 1-2 (1591nm) $\leq \pm 0.15$ dB

Figure 3e Polarization Dependent Loss 1-3 (1490nm) $\leq \pm 0.15$ dB

Figure 3f Polarization Dependent Loss 1-3 (1310nm) $\leq \pm 0.15$ dB

Figure 3g Return Loss 1-1 (1490nm) \geq 50 dB

Figure 3h Return Loss 1-1 (1310nm) \geq 50 dB

Figure 3i Return Loss 1-1 (1591nm) \geq 50 dB

Figure 3j Isolation 1-2 (1490nm) \geq 40 dB

Figure 3k Isolation 1-2 (1310nm) \geq 40 dB

Figure 3I Isolation 1-3 (1550nm) ≥ 15 dB

Vibration Storage Test Result

Figure 4a	Insertion Loss Change 1-2 (1591nm) $\leq \pm 0.50$ dB
Figure 4b	Insertion Loss Change1-3 (1490nm) $\leq \pm 0.50$ dB
Figure 4c	Insertion Loss Change1-3 (1310nm) $\leq \pm 0.50$ dB
Figure 4d	Polarization Dependent Loss 1-2 (1591nm) $\leq \pm 0.15$ dB

Figure 4e Polarization Dependent Loss 1-3 (1490nm) $\leq \pm 0.15$ dB

Figure 4f Polarization Dependent Loss 1-3 (1310nm) $\leq \pm 0.15$ dB

Figure 4g Return Loss 1-1 (1490nm) \geq 50 dB

Figure 4h Return Loss 1-1 (1310nm) \geq 50 dB

Figure 4i Return Loss 1-1 (1591nm) \geq 50 dB

Figure 4j Isolation 1-2 (1490nm) \geq 40 dB

Figure 4k Isolation 1-2 (1310nm) \geq 40 dB

Figure 4l Isolation 1-3 (1550nm) \geq 15 dB

Impact Storage Test Result

Figure 5a

Insertion Loss Change 1-2 (1591nm) $\leq \pm 0.50$ dB

Figure 5b

Insertion Loss Change1-3 (1490nm) $\leq \pm 0.50$ dB

Figure 5c

Insertion Loss Change1-3 (1310nm) $\leq \pm 0.50$ dB

Figure 5d

Polarization Dependent Loss 1-2 (1591nm) $\leq \pm 0.15$ dB

Figure 5e Polarization Dependent Loss 1-3 (1490nm) $\leq \pm 0.15$ dB

Figure 5f Polarization Dependent Loss 1-3 (1310nm) $\leq \pm 0.15$ dB

Figure 5g Return Loss 1-1 (1490nm) \geq 50 dB

Figure 5h Return Loss 1-1 (1310nm) \geq 50 dB

Figure 5i Return Loss 1-1 (1591nm) \geq 50 dB

Figure 5j Isolation 1-2 (1490nm) \geq 40 dB

Figure 5k Isolation 1-2 (1310nm) \geq 40 dB

Figure 5l Isolation 1-3 (1550nm) \geq 15 dB

Fiber Pull Test Result

Figure 6a

Insertion Loss Change 1-2 (1591nm) $\leq \pm 0.50$ dB

Figure 6b

Insertion Loss Change 1-3 (1490nm) $\leq \pm 0.50$ dB

Figure 6c

Insertion Loss Change 1-3 (1310nm) $\leq \pm 0.50$ dB

Figure 6d

Polarization Dependent Loss 1-2 (1591nm) $\leq \pm 0.15$ dB

Figure 6e Polarization Dependent Loss 1-3 (1490nm) $\leq \pm 0.15$ dB

Figure 6f Polarization Dependent Loss 1-3 (1310nm) $\leq \pm 0.15$ dB

Figure 6g Return Loss 1-1 (1490nm) \geq 50 dB

Figure 6h Return Loss 1-1 (1310nm) \geq 50 dB

Figure 6i Return Loss 1-1 (1591nm) \geq 50 dB

Figure 6j Isolation 1-2 (1490nm) \geq 40 dB

Figure 6k Isolation 1-2 (1310nm) \geq 40 dB

Figure 6l Isolation 1-3 (1550nm) ≥ 15 dB

Side Pull Test Result

Figure 7a

Insertion Loss Change 1-2 (1591nm) $\leq \pm 0.50$ dB

Figure 7b

Insertion Loss Change 1-3 (1490nm) $\leq \pm 0.50$ dB

Figure 7c

Insertion Loss Change 1-3 (1310nm) $\leq \pm 0.50$ dB

Figure 7d

Polarization Dependent Loss 1-2 (1591nm) $\leq \pm 0.15$ dB

Figure 7e Polarization Dependent Loss 1-3 (1490nm) $\leq \pm 0.15$ dB

Figure 7f Polarization Dependent Loss 1-3 (1310nm) $\leq \pm 0.15$ dB

Figure 7g Return Loss 1-1 (1490nm) \geq 50 dB

Figure 7h Return Loss 1-1 (1310nm) \geq 50 dB

Figure 7i Return Loss 1-1 (1591nm) \geq 50 dB

Figure 7j Isolation 1-2 (1490nm) \geq 40 dB

Figure 7k Isolation 1-2 (1310nm) \geq 40 dB

Figure 7I Isolation 1-3 (1550nm) \geq 15 dB

Low Temperature Test Result

Figure 8a Insertion Loss Change 1-2 (1591nm) $\leq \pm 0.50$ dB

Figure 8b Insertion Loss Change1-3 (1490nm) $\leq \pm 0.50$ dB

Figure 8c Insertion Loss Change1-3 (1310nm) $\leq \pm 0.50$ dB

Figure 8d Polarization Dependent Loss 1-2 (1591nm) $\leq \pm 0.15$ dB

Figure 8e Polarization Dependent Loss 1-3 (1490nm) $\leq \pm 0.15$ dB

Figure 8f Polarization Dependent Loss 1-3 (1310nm) $\leq \pm 0.15$ dB

Figure 8g Return Loss 1-1 (1490nm) \geq 50 dB

Figure 8h Return Loss 1-1 (1310nm) \geq 50 dB

Figure 8i Return Loss 1-1 (1591nm) \geq 50 dB

Figure 8j Isolation 1-2 (1490nm) \geq 40 dB

Figure 8k Isolation 1-2 (1310nm) \geq 40 dB

Figure 8I Isolation 1-3 (1550nm) \geq 15 dB

Dry Heat Test Result

Figure 9a Insertion Loss Change 1-2 (1591nm) $\leq \pm 0.50$ dB

Figure 9b Insertion Loss Change1-3 (1490nm) $\leq \pm 0.50$ dB

Figure 9c Insertion Loss Change1-3 (1310nm) $\leq \pm 0.50$ dB

Figure 9d Polarization Dependent Loss 1-2 (1591nm) $\leq \pm 0.15$ dB

Figure 9e Polarization Dependent Loss 1-3 (1490nm) $\leq \pm 0.15$ dB

Figure 9f Polarization Dependent Loss 1-3 (1310nm) $\leq \pm 0.15$ dB

Figure 9g Return Loss 1-1 (1490nm) \geq 50 dB

Figure 9h Return Loss 1-1 (1310nm) ≥ 50 dB

Figure 9i Return Loss 1-1 (1591nm) \geq 50 dB

Figure 9j Isolation 1-2 (1490nm) \geq 40 dB

Figure 9k Isolation 1-2 (1310nm) \geq 40 dB

Figure 9l Isolation 1-3 (1550nm) \geq 15 dB

High Power Test Result

Figure 10a Insertion Loss Change 1-2 (1591nm) $\leq \pm 0.50$ dB

Figure 10b Insertion Loss Change1-3 (1490nm) $\leq \pm 0.50$ dB

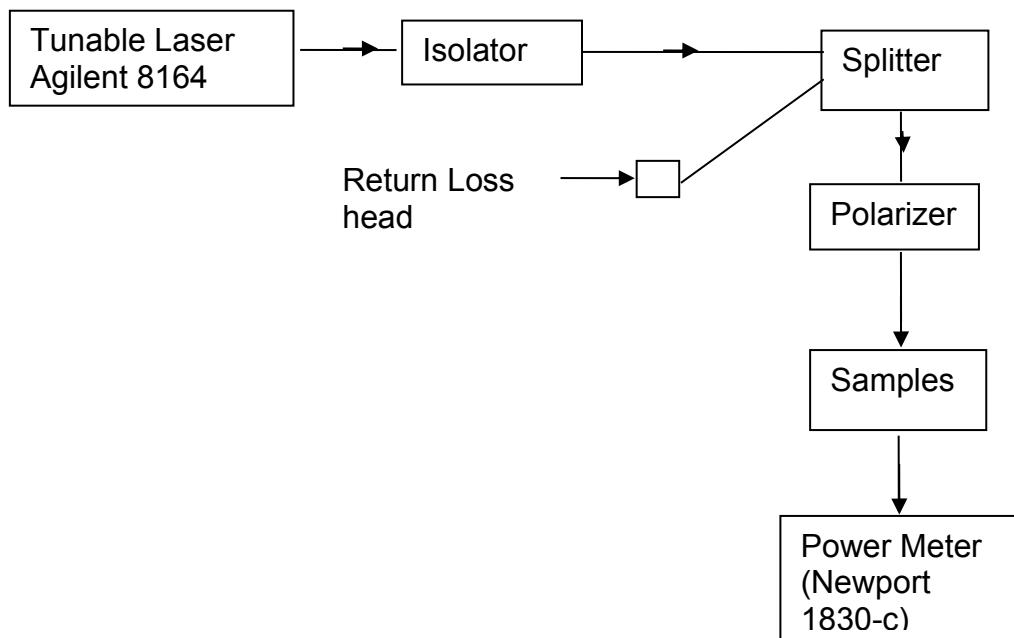
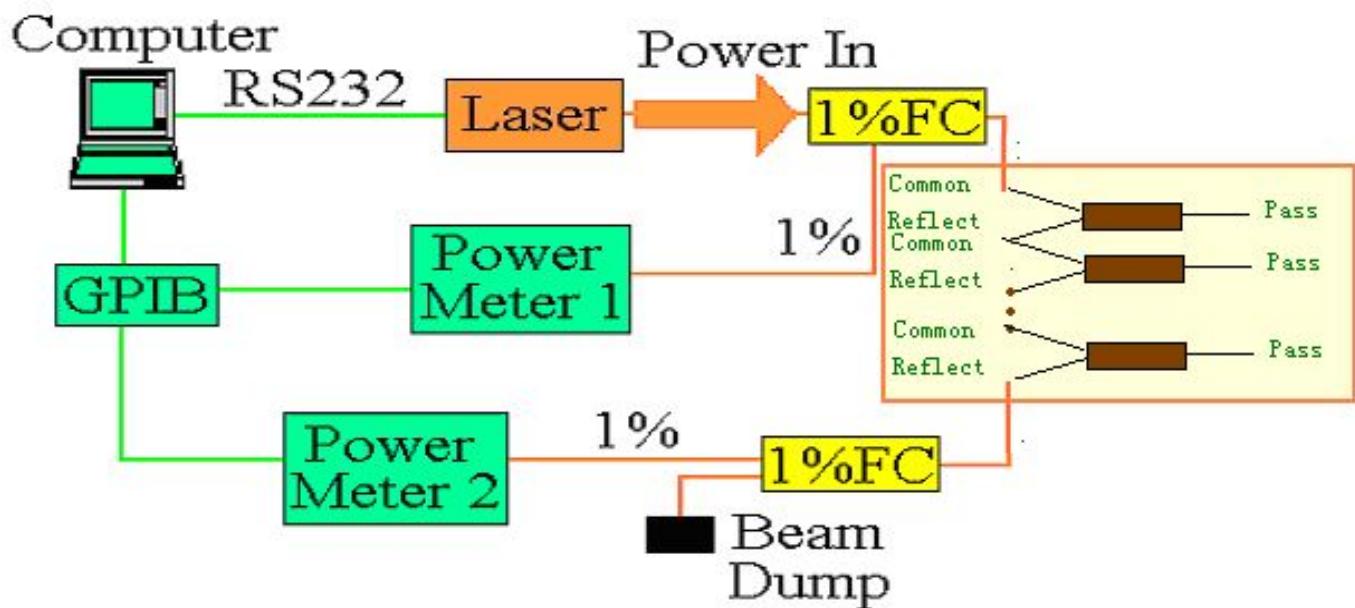

Figure 10c Insertion Loss Change1-3 (1310nm) $\leq \pm 0.50$ dB

Figure 10d Polarization Dependent Loss 1-2 (1591nm) $\leq \pm 0.15$ dB


Figure 10e	Polarization Dependent Loss 1-3 (1490nm) $\leq \pm 0.15$ dB
Figure 10f	Polarization Dependent Loss 1-3 (1310nm) $\leq \pm 0.15$ dB
Figure 10g	Return Loss 1-1 (1490nm) ≥ 50 dB
Figure 10h	Return Loss 1-1 (1310nm) ≥ 50 dB
Figure 10i	Return Loss 1-1 (1591nm) ≥ 50 dB
Figure 10j	Isolation 1-2 (1490nm) ≥ 40 dB
Figure 10k	Isolation 1-2 (1310nm) ≥ 40 dB
Figure 10l	Isolation 1-3 (1550nm) ≥ 15 dB

Appendix: Test Setup

The test setup for measuring the performance values is shown below (test at 23 °C)

The test setup for high power is shown below:

